

Oxford Cambridge and RSA Examinations

GCE

Computer Science

H446/02: Algorithms and programming

Advanced GCE

Mark Scheme for November 2020

PMT

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of
qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications
include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals,
Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in
areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the
needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is
invested back into the establishment to help towards the development of qualifications and
support, which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements
of the examination. It shows the basis on which marks were awarded by examiners. It does not
indicate the details of the discussions which took place at an examiners’ meeting before marking
commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in
candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills
demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report
on the examination.

© OCR 2020

PMT

H446/02 Mark Scheme November 2020

2

Annotations

Annotation Meaning

Omission mark

Benefit of the doubt

Subordinate clause / consequential error

Incorrect point

Expansion of a point

Follow through

Not answered question

No benefit of doubt given

Point being made

Repeat

Correct point

Too vague

Zero (big)

Blank Page – this annotation must be used on all blank pages within an answer
booklet (structured or unstructured) and on each page of an additional object

where there is no candidate response.

PMT

H446/02 Mark Scheme November 2020

 Level 1

 Level 2

 Level 3

PMT

H446/02 Mark Scheme November 2020

4

Question Answer Marks Guidance

1a

1 mark for definition
• Removal of unnecessary detail // Simplification to allow development of a

program more easily

1 mark to max 2 for application
e.g.

• The actual movements are represented by vertices/lines
• State of the move is represented by a letter/symbol rather than the actual

move position
• Tree does not show details about what the moves are

3
AO1.1

(1)
AO2.1

(1)
AO2.2

(1)

Allow other suitable examples that
are relevant to the scenario in the
question.

1b One node (node A) has more than 2 connections
Nodes aren’t ordered (e.g. F is C’s left child)

1
AO2.1

(1)

1c 1 mark for identification
• Null pointers

1
AO2.1

(1)

1d

1 mark per bullet
• Take A as starting node
• Visit B, C and E
• Visit D, F, G and H
• Visit I and J

4
AO1.2

(2)
AO2.2

(2)

Allow the reverse ordering from
right to left e.g. A; E, C, B; H, G, F,
D; J, I

1ei

1 mark per bullet to max 3
• Search the tree to find the location of Node E // by example of search
• Replace the content of node E with blank/null/equivalent
• Make node A point to the node H
• Add node E to the empty node list

3
AO1.2

(3)

1eii

1 mark per bullet to max 3
• Search the tree to find the location of node G // by example of search
• Create a new node with value K
• Add a pointer from node G to the new node
• Make node K point to null/equivalent

3
AO1.2

(3)

PMT

H446/02 Mark Scheme November 2020

1f

1 mark per similarity to max 2
• Both consists of nodes
• Both are connected by edges/links
• Both are non-linear data structures
• Both are dynamic data structures

1 mark per difference to max 2
• Tree is 1-directional whereas a graph is 2-directional
• Tree has a root node whereas a graph does not have a (clear) root node
• Tree will not have cycles whereas graphs can contain cycles
• Tree will not be weighted whereas edges in a graph can be weighted

4
AO1.1

(4)

2a

1 mark per bullet to max 4
e.g.

• Decomposition splits the problem into smaller sub problems
• Repeated decomposition gives solvable parts
• The division can lead to the development of subroutines/modules
• The division can lead to a logical division between programmers/teams
• ...e.g. one team works on one section and another concurrently on another

4
AO1.1

(2)
AO1.2

(2)

PMT

H446/02 Mark Scheme November 2020

6

2b

Mark Band 3 – High level (7-9 marks)
The candidate demonstrates a thorough knowledge and understanding of
concurrent processing; the material is generally accurate and detailed.
The candidate is able to apply their knowledge and understanding directly and
consistently to the context provided. Evidence/examples will be explicitly
relevant to the explanation.
There is a well-developed line of reasoning which is clear and logically
structured. The information presented is relevant and substantiated.

Mark Band 2 – Mid level (4-6 marks)
The candidate demonstrates reasonable knowledge and understanding of
concurrent processing; the material is generally accurate but at times
underdeveloped.
The candidate is able to apply their knowledge and understanding directly to
the context provided although one or two opportunities are missed.
Evidence/examples are for the most part implicitly relevant to the explanation.
The candidate provides a reasonable discussion, the majority of which is
focused. Evaluative comments are, for the most part appropriate, although one
or two opportunities for development are missed.
There is a line of reasoning presented with some structure. The information
presented is in the most part relevant and supported by some evidence.

Mark Band 1 – Low Level (1-3 marks)
The candidate demonstrates a basic knowledge of concurrent processing with
limited understanding shown; the material is basic and contains some
inaccuracies. The candidates makes a limited attempt to apply acquired
knowledge and understanding to the context provided.
The candidate provides a limited discussion which is narrow in focus.
Judgements if made are weak and unsubstantiated.
The information is basic and comunicated in an unstructured way. The
information is supported by limited evidence and the relationship to the
evidence may not be clear.

0 marks
No attempt to answer the question or response is not worthy of credit.

9
AO1.1

(2)
AO1.2

(2)
AO2.1

(2)
AO3.3

(3)

AO1: Knowledge and Understanding
Indicative content
• Processes are happening at the

same time/at overlapping times
• One process may need to start

before a second has finished
• Individual processes are threads,

each thread has a life line
• One request will be sent to the

server, this will have a thread

AO2: Application
• Multiple requests to the server can

be made at the same time
• Programming on server will need

to allow multiple threads to
manipulate a list of requests

• Programming will need to restrict
access to the database of
seats/sales etc.

• Will allow those reading and writing
to manipulate at the same time

• Record locking will need
implementing – more complex
programming

• May be selling alongside other
systems, therefore needs to
communicate with external
systems that will also use record
locking to avoid two different
external companies accessing and
selling the same tickets.

AO3: Evaluation
• Will allow for multiple access to the

website at the same time by
different customers – as it would
happen in real life

PMT

H446/02 Mark Scheme November 2020

• Will allow for multiple ticket sales
for the same event without selling
the same seat twice

3a

1 mark per bullet
• Calculation of result to 3
• Call with thisFunction(theArray, num1=4, num2=7, num3=35)
• Result = 5
• call with thisFunction(theArray,num1=6,num2=7,num3=35)
• (Result = 6) return of value 6

Function call num1 num2 num3 result

thisFunction(theArray,0,7,35) 0 7 35 3
thisFunction(theArray,4,7,35) 4 7 35 5
thisFunction(thisArray,6,7,35) 6 7 35 6

5
AO2.1

(3)
AO2.2

(2)

3b Binary search
1

AO2.1
(1)

3c

1 mark per bullet to max 4, e.g.

• Recursion uses more memory…
• …iteration uses less memory
• Recursion declares new variables //variables are put onto the stack each

time…
• ...iteration reuses the same variables
• Recursive can run out of memory/stack space…
• …while iteration cannot run out of memory
• Recursion can express a problem more elegantly // in fewer lines of code…
• …while iteration can take more lines of code // be harder to understand
• Recursion will be self-referential // will call itself…
• … whereas iteration does not

4
AO1.1

(2)
AO1.2

(2)

PMT

H446/02 Mark Scheme November 2020

8

3d

1 mark per bullet to max 6
• Retains function call
• Uses a loop
• …that will loop until all elements inspected or value found
• Updates num1 appropriately
• Updates num2 appropriately
• Returns -1 in the correct place if the value has not been found
• Returns the result in the correct place if the value has been found

e.g.
function thisFunction(theArray, num1, num2, num3)

 while (true)

 result = num1 + ((num2 - num1) DIV 2)

 if num2 < num1 then

 return -1

 else

 if theArray[result] < num3 then

 num1 = result + 1

 elseif theArray[result] > num3 then

 num2 = result - 1

 else

 return result

 endif

 endif

 endwhile

endfunction

6
AO2.2

(3)
AO3.1

(3)

PMT

H446/02 Mark Scheme November 2020

4a

1 mark per bullet
• By reference will change the actual contents of the array in the main program//

when control returns to the main program the array will be sorted
• By value would create a copy and not change the original // when control

returns to the main program the array will not be sorted
• By value the array is local to the function.
• By reference will use less memory

2
AO1.2

(1)
AO2.2

(1)

4b

1 mark pet bullet to max 3
• Descending order
• Line 07 (dataArray[tempos]<temp) has the comparison…
• …that checks if current position is less than item to insert and…
• …breaks out of loop when current position is less than or equal to item to insert

3
AO1.2

(1)
AO2.2

(2)

PMT

H446/02 Mark Scheme November 2020

10

4c

Mark Band 3 – High level (7-9 marks)
The candidate demonstrates a thorough knowledge and understanding of big O
and sorting algorithms; the material is generally accurate and detailed.
The candidate is able to apply their knowledge and understanding directly and
consistently to the context provided.
Evidence/examples will be explicitly relevant to the explanation.
The candidate is able to weigh up the use of the sorting algorithms which results
in a supported and realistic judgment as to whether it is possible to use them in
this context.
There is a well-developed line of reasoning which is clear and logically
structured. The information presented is relevant and substantiated.

Mark Band 2 – Mid level (4-6 marks)
The candidate demonstrates reasonable knoledge and understanding of big O
and sorting algorithms; the material is generally accurate but at times
underdeveloped.
The candidate is able to apply their knowledge and understanding directly to the
context provided although one or two opportunities are missed.
Evidence/examples are for the most part implicitly relevant to the explanation.
The candidate makes a reasonable attempt to come to a conclusion showing
some recognition of influencing factors that would determine whether it is
possible to use the sorting algorithms in this context.
There is a line of reasoning presented with some structure. The information
presented is in the most part relevant and supported by some evidence

Mark Band 1 – Low Level (1-3 marks)
The candidate demonstrates a basic knowledge of big O and sorting algorithms
with limited understanding shown; the material is basic and contains some
inaccuracies. The candidates makes a limited attempt to apply acquired
knowledge and understanding to the context provided.
The candidate provides nothing more than an unsupported assertion.
The information is basic and comunicated in an unstructured way. The
information is supported by limited evidence and the relationship to the evidence
may not be clear.

0 marks

9
AO1.
1 (2)
AO1.
2 (2)
AO2.
1 (2)
AO3.
3 (3)

AO1: Knowledge and Understanding
Indicative content
O(1)
• Constant space, does not change
O(n)
• Linear
• Same as number of elements
• As number of elements increases so

does the time/space
O(n2)
• polynominal
• As number of elements increases,

time/space increases by *n
 O(n log(n))
• Linearithmic
AO2: Application
• Space: Merge sort will require more

memory usage as the number of
elements increases. Insertion will not
require any more space than original.
Quick will increase but not as much as
merge.

• Best time: Insertion increases at the
same rate as the number of elements.
Quick and merge increase at greater
rate

• Worst time: insertion and quick increase
significantly by n for each additional
item. Merge sort increases less per
element.

• Log more appropriate for large number
of elements

AO3: Evaluation
e.g.
• Small array – space is not important.

Few number of elements. Look for
consistency.

PMT

H446/02 Mark Scheme November 2020

No attempt to answer the question or response is not worthy of credit. • Large array therefore memory important
– could remove merge as inappropriate.
Logarithmic more efficient.

PMT

H446/02 Mark Scheme November 2020

12

4d

1 mark per bullet for description to max 6
• Compare each pair of adjacent elements
• If they are not in the correct order then swap the elements
• If they are in the correct order then do no swap elements
• When you read the end of the array return to the start
• Repeat n elements time
• Set a flag to be false whenever a swap is made
• …repeat the loop if the flag is not false

6
AO1.1

(2)
AO1.2

(4)

5a
1 mark per pointer

• queueHead: Point to the first element in the queue // next element to remove
• queueTail: Point to the last element in the queue

2
AO1.2

(2)

PMT

H446/02 Mark Scheme November 2020

5b

1 mark per bullet up to max 5

• first 3 jobs removed
• 128 and 129 added in positions 4 and 5 respectively
• no additional jobs
• queueHead being 3 (FT errors)
• queueTail being 5 (FT errors)

queueHead

queueTail

6

5 job-129

4 job-128

3 job-127

2

1

0

3

5

5
AO2.1

(2)
AO2.2

(3)

The underlying implementation of
the queue has not been specified,
so allow alternative valid answers.
e.g.
queueHead = 0
queueTail = 2
Location 2: 129
Location 1: 128
Location 0: 127

PMT

H446/02 Mark Scheme November 2020

14

5ci

1 mark per bullet to max 5
• Function declaration
• Checking if queue is empty
• …returning null
• (Otherwise) incrementing queueHead
• …returning buffer[queueHead-1]

e.g.
function dequeue()
 if queueHead > queueTail then
 return null
 else
 queueHead = queueHead + 1
 return buffer[queueHead-1]
 endif
endfunction

5
AO2.2

(2)
AO3.3

(3)

Note: Accept alternative valid
underlying implementation answers
e.g. Shifting all elements in queue
forward.

5cii

1 mark per bullet to max 6
• Function declaration taking parameter
• Checking if queue is full
• …returning -1
• (Otherwise) incrementing queueTail
• Adding newJob to buffer(queueTail)
• Returning 1

e.g.
function enqueue(newJob)
 if queueTail == 99 then
 return -1
 else
 queueTail = queueTail + 1
 buffer[queueTail] = newJob
 return 1
 endif
endfunction

6
AO2.2

(3)
AO3.3

(3)

PMT

H446/02 Mark Scheme November 2020

5ciii

1 mark per bullet to max 8
• Inputting user choice
• If enqueue chosen input job name
• …call enqueue with input value as parameter
• …check if return value is -1 and output full
• …otherwise output message that item is added
• If dequeue chosen
• …call dequeue and save returned value
• …output returned value (jobname) if not null
• …or output queue is empty

e.g.
main()
 choice = input("Add or remove?")
 if choice == "ADD" then
 jobname = input("Enter job name")
 returnValue = enqueue(jobname)
 if returnValue == -1 then
 print("Queue full")
 else
 print("Job added")
 endif
 else
 returnValue = dequeue()
 if returnValue == null then
 print("Queue empty")
 else
 output returnValue
 endif
 endif
endmain

8
AO2.2

(2)
AO3.3

(6)

Allow equivalent checks / logic

5d

1 mark per bullet to 3
• Check if either head or tail are incremented to above 99
• … set to be 0 instead
• When checking if array is full check if (queueTail == queueHead – 1) OR

(queueTail==99 AND queueHead==0)

3
AO2.1

(1)
AO2.2

(2)

Credit equivalent modulo arithmetic
solution

PMT

H446/02 Mark Scheme November 2020

16

5e

1 mark per bullet to max 3, e.g.
• Use a different structure e.g. a linked list
• …items can be added at different points in the linked list depending on priority
• …by changing the pointers to items needing priority
• Have different queues for different priorities
• …add the job to the queue relevant to its priority
• …print all the jobs in the highest priority queue first

3
AO2.1

(2)
AO2.1

(1)

Allow other suitable descriptions
that show how the program could
be amended.

6ai

1 mark per bullet

• Points to where the next/first free node is
• To add data into the linked listed.

2
AO1.2

(1)
AO2.2

(1)

6aii Points to the first element in the linked list 1
AO1.2

(1)

PMT

H446/02 Mark Scheme November 2020

6aiii

1 mark per bullet
• No change made to nodes/pointers unaffected by this removal
• Index 0 points to 2 instead of 3
• Node 9 points to 3 instead of -1 // Node freeListPointer points to 3 instead of 4
• Node 3 points to 4 // -1 (must match MP3

Solution:

 index data pointer
headPointer 0 0 2.6 2

 1 3.5 -1
freeListPointer 4 2 1.8 1

 3 6.9 -1
 4 5
 5 6
 6 7
 7 8
 8 9
 9 3

Alternative Solution:

 index data pointer
headPointer 0 0 2.6 2

 1 3.5 -1
freeListPointer 3 2 1.8 1

 3 6.9 4
 4 5
 5 6
 6 7
 7 8
 8 9
 9 -1

4
AO1.2

(1)
AO2.2

(1)

6.9 3 may or may not be written by
candidates, both are acceptable.

Candidates may add the node
freed up (node 3) to the start or
the end of the free storage. Award
marks for both approaches.

PMT

H446/02 Mark Scheme November 2020

18

6bi

1 mark per bullet
• Class declaration and all code is nested within the class
• Two private identifiers data and pointer (with suitable data types if given)
• Public constructor heading as a procedure (public may be implied but cannot

be private) taking both parameters as given in table
• Assigns parameters to the attributes

e.g.
public class node
 private data as real
 private pointer as integer
 public procedure new(newData, newPointer)
 data = newData
 pointer = newPointer
 endprocedure
endclass

4
AO2.2

(1)
AO3.3

(3)

Accept

public node(newData, newPointer)
(may also have data stypes for
parameters e.g. int newData)

Accept:

this.data = newData
this.pointer = newPointer

or similar

6bii

1 mark per bullet to max 2
• A get method allows the attribute to be accessed / returned
• A set method allows the attribute to be changed (with parameters)

2
AO2.2

(2)

6c

1 mark per bullet to max 6
• Initialise message string
• Start with the headPointer
• Check if the headPointer is null
• …return that the list is empty
• Check the pointer of the node at headPointer
• If it is not null/-1/the last element
• loop through all the linkedList elements
• …concatenate the pointer to the message
• …replacing the pointer with the current node’s pointer each time
• …if the data is found concatenate the pointer and “found” to the message

and return it
• …if the loop ends and the data item is not found, concatenate “not found” to

the message and return it

6
AO1.2

(2)
AO2.1

(2)
AO2.2

(2)

PMT

H446/02 Mark Scheme November 2020

6di

1 mark for identifying error and correction (identification may be implicit)

• Line 02 tempPointer should become headPointer, not -1
tempPointer = headPointer

• Line 05 message should say it’s empty not full
print("List is empty")

• Line 07 pointer should be tempPointer
while linkedList[tempPointer].getPointer() != -1

• Line 08 Incorrect call to node pointer dataToPrint = dataToPrint + “
” + linkedList[tempPointer].getData()

• Line 09 assignment is wrong way
tempPointer = linkedList[tempPointer].getPointer()

• Line 11 missing final parenthesis print(dataToPrint+ “ ” +
linkedList[tempPointer].getData())

3
AO2.1

(2)
AO2.2

(2)

Do not award marks for stating
the line number without a valid
correction.

6dii

1 mark per bullet
• Stepping Through The Code…
• …to run one line at a time to see where the error is
• Syntax Error Highlighting….
• ….to distinguish syntax errors in the program code
• Setting breakpoints…
• ….to debug individual sections of code at a time
• Variable watch window…
• …To check that the variables are being updated corrected

6

The features must relate to
debugging code.

Allow other suitable features
appropriate to debugging code.

1 Mark for identification and 1
mark for suitable expansion.

PMT

H446/02 Mark Scheme November 2020

20

6e

Mark Band 3 – High level (9-12 marks)
The candidate demonstrates a thorough knowledge and understanding of
the object orientied techniques; the material is generally accurate and
detailed. The candidate is able to apply their knowledge and understanding
directly and consistently to the context provided.
Evidence/examples will be explicitly relevant to the explanation.The
candidate is able to weigh up the use of all of the object orientied
techniques which results in a supported and realistic judgment as to
whether it is possible to use them in this context.
There is a well-developed line of reasoning which is clear and logically
structured. The information presented is relevant and substantiated.

Mark Band 2 – Mid level (5-8 marks)
The candidate demonstrates reasonable knowledge and understanding of
the object orientied techniques; the material is generally accurate but at
times underdeveloped.
The candidate is able to apply their knowledge and understanding directly
to the context provided although one or two opportunities are missed.
Evidence/examples are for the most part implicitly relevant to the
explanation. The candidate makes a reasonable attempt to come to a
conclusion showing some recognition of influencing factors that would
determine whether it is possible to use each object orientied technique in
this context.
There is a line of reasoning presented with some structure. The
information presented is in the most part relevant and supported by some
evidence

Mark Band 1 – Low Level (1-4 marks)
The candidate demonstrates a basic knowledge of the object orientied
techniques with limited understanding shown; the material is basic and
contains some inaccuracies. The candidates makes a limited attempt to
apply acquired knowledge and understanding to the context provided.
The candidate provides nothing more than an unsupported assertion.
The information is basic and comunicated in an unstructured way. The
information is supported by limited evidence and the relationship to the
evidence may not be clear.

12
AO1.1 (3)
AO1.2 (3)
AO2.1 (3)
AO3.3 (3)

AO1: Knowledge and Understanding
Indicative content
• Classes, this a template. It will define what

attributes and methods an object should have.
• Objects, when you create an instance of a class.

Each object that is instantiated from the same
class will share the same attributes and methods.

• Inheritance, when a sub class takes on the
attributes and methods from a superclass/parent
class. It can also have its own extra
attributes/methods.

• Overriding, when a method name is the same in a
parent and sub class, then the method in the
parent/super class will be overridden

• Encapsulation, this protects attributes of an object
by making them private so that they can’t be
accessed or altered accidentally by other objects.

AO2: Application
• A class can be used to declare the attributes and

methods for the linked list. These will initialise the
nodes and join them.

• Objects can then be used be used to instantiate
the class each time a new linked list is needed.
Each can be given a different identifier by the
other programs.

• Further subclasses may be used by other
programs. These can therefore take on the
attributes and methods from the base class.
These can also be changed or overridden
depending on the purpose of the other programs.

• Encapsulation can be used by using set and get
methods to ensure that the nodes in the linked list
are changed in a way that is intended.

AO3: Evaluation

PMT

H446/02 Mark Scheme November 2020

0 marks
No attempt to answer the question or response is not worthy of credit.

• Use of OPP techniques will allow for code
reusability. His linked list can be saved as library
and then reused many times leading to less code.

• OOP also allows programs to be easier to modify
and maintain.

PMT

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be
recorded or monitored

PMT

mailto:general.qualifications@ocr.org.uk
http://www.ocr.org.uk/

	Annotations

